Skip to content Skip to navigation

Flow Homogenization Enables a Massively Parallel Fluidic Design for High-Throughput and Multiplexed Cell Isolation

TitleFlow Homogenization Enables a Massively Parallel Fluidic Design for High-Throughput and Multiplexed Cell Isolation
Publication TypeJournal Article
Year of Publication2020
AuthorsOoi C, Earhart CM, Hughes CE, Lee J-R, Wong DJ, Wilson RJ, Rohatgi R, Wang SX
JournalAdvanced Materials Technologies
Volumen/a
Pagination1900960
Keywordsflow homogenization, magnetic separation, microfluidics, multiplexed cell separation, rare cell isolation
Abstract

Abstract Microfluidic devices are widely used for applications such as cell isolation. Currently, the most common method to improve throughput for microfluidic devices involves fabrication of multiple, identical channels in parallel. However, this “numbering up” only occurs in one dimension, thereby limiting gains in volumetric throughput. In contrast, macrofluidic devices permit high volumetric flow rates but lack the finer control of microfluidics. Here, it is demonstrated how a micropore array design enables flow homogenization across a magnetic cell capture device, thus creating a massively parallel series of microscale flow channels with consistent fluidic and magnetic properties, regardless of spatial location. This design enables scaling in two dimensions, allowing flow rates exceeding 100 mL h−1 while maintaining >90% capture efficiencies of spiked lung cancer cells from blood in a simulated circulating tumor cell system. Additionally, this design facilitates modularity in operation, which is demonstrated by combining two different devices in tandem for multiplexed cell separation in a single pass with no additional cell losses from processing.

URLhttps://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900960
DOI10.1002/admt.201900960