Title | Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Ng E, Nadeau KC, Wang SX |
Journal | Biosens Bioelectron |
Volume | 80 |
Pagination | 359-365 |
Date Published | 2016 Feb 2 |
ISSN | 1873-4235 |
Abstract | Current common allergen detection methods, including enzyme-linked immunosorbent assays (ELISAs) and dip-stick methods, do not provide adequate levels of sensitivity and specificity for at-risk allergic patients. A method for performing highly sensitive and specific detection of multiple food allergens is thus imperative as food allergies are becoming increasingly recognized as a major healthcare concern, affecting an estimated 4% of the total population. We demonstrate first instance of sensitive and specific multiplexed detection of major peanut allergens Ara h 1 and Ara h 2, and wheat allergen Gliadin using giant magnetoresistive (GMR) sensor arrays. Commercialized ELISA kits for Ara h 1 and Ara h 2 report limits of detection (LODs) at 31.5ng/mL and 0.2ng/mL, respectively. In addition, the 96-well-based ELISA developed in-house for Gliadin was found to have a LOD of 40ng/mL. Our multiplexed GMR-based assay demonstrates the ability to perform all three assays on the same chip specifically and with sensitivities at LODs about an order of magnitude lower than those of 96-well-based ELISAs. LODs of GMR-based assays developed for Ara h 1, Ara h 2, and Gliadin were 7.0ng/mL, 0.2ng/mL, and 1.5ng/mL, respectively, with little to no cross-reactivity. These LODs are clinically important as some patients could react strongly against such low allergen levels. Given the limitations of current industrial detection technology, multiplexed GMR-based assays provide a method for highly sensitive and specific simultaneous detection of any combination of food-product allergens, thus protecting allergic patients from life-threatening events, including anaphylaxis, by unintentional consumption. |
DOI | 10.1016/j.bios.2016.02.002 |
Alternate Journal | Biosens Bioelectron |
PubMed ID | 26859787 |