Skip to content Skip to navigation

Nanosized corners for trapping and detecting magnetic nanoparticles.

TitleNanosized corners for trapping and detecting magnetic nanoparticles.
Publication TypeJournal Article
Year of Publication2009
AuthorsDonolato M, Gobbi M, Vavassori P, Leone M, Cantoni M, Metlushko V, Ilic B, Zhang M, Wang SX, Bertacco R
JournalNanotechnology
Volume20
Issue38
Pagination385501
Date Published2009 Sep 23
ISSN1361-6528
KeywordsFerric Compounds, Magnetics, Metal Nanoparticles, Microscopy, Electron, Scanning, Nanotechnology
Abstract

We present a device concept based on controlled micromagnetic configurations in a corner-shaped permalloy nanostructure terminated with two circular disks, specifically designed for the capture and detection of a small number of magnetic beads in suspension. A transverse head-to-head domain wall (TDW) placed at the corner of the structure plays the role of an attracting pole for magnetic beads. The TDW is annihilated in the terminating disks by applying an appropriate magnetic field, whose value is affected by the presence of beads chemically bound to the surface. In the case where the beads are not chemically bound to the surface, the annihilation of the TDW causes their release into the suspension. The variation of the voltage drop across the corner, due to the anisotropic magnetoresistance (AMR) while sweeping the magnetic field, is used to detect the presence of a chemically bound bead. The device response has been characterized by using both synthetic antiferromagnetic nanoparticles (disks of 70 nm diameter and 20 nm height) and magnetic nanobeads, for different thicknesses of the protective capping layer. We demonstrate the detection down to a single nanoparticle, therefore the device holds the potential for the localization and detection of small numbers of molecules immobilized on the particle's functionalized surface.

DOI10.1088/0957-4484/20/38/385501
Alternate JournalNanotechnology
PubMed ID19713593
Grant List1U54CA119367 / CA / NCI NIH HHS / United States