Skip to content Skip to navigation

Selected Publications

Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is H  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Lin S-J, Huang Y-L, Song MY, Lee C-M, Xue F, Chen G-L, Yang S-Y, Chang Y-J, Wang I-J, Hsin Y-C et al..  2021.  Challenges toward Low-Power SOT-MRAM. 2021 IEEE International Reliability Physics Symposium (IRPS).
Lin S-J, Huang Y-L, Song MY, Lee C-M, Xue F, Chen G-L, Yang S-Y, Chang Y-J, Wang I-J, Hsin Y-C et al..  2021.  Challenges toward Low-Power SOT-MRAM. 2021 IEEE International Reliability Physics Symposium (IRPS).
Ouyang Y, He J, Hu J, Zhao G, Wang Z, Wang S.X.  2015.  Contactless Current Sensors Based on Magnetic Tunnel Junction for Smart Grid Applications. IEEE Transactions on Magnetics. 51:1-4.
Ouyang Y, He J, Hu J, Zhao G, Wang Z, Wang S.X.  2015.  Contactless Current Sensors Based on Magnetic Tunnel Junction for Smart Grid Applications. IEEE Transactions on Magnetics. 51:1-4.
Ouyang Y, He J, Hu J, Wang SX.  2012.  A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.. Sensors (Basel). 12(11):15520-41.
Ouyang Y, He J, Hu J, Wang SX.  2012.  A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.. Sensors (Basel). 12(11):15520-41.
Ouyang Y, Wang Z, Zhao G, Hu J, Ji S, He J, Wang SX.  2019.  Current sensors based on GMR effect for smart grid applications. Sensors and Actuators A: Physical. 294:8-16.
Ouyang Y, Wang Z, Zhao G, Hu J, Ji S, He J, Wang SX.  2019.  Current sensors based on GMR effect for smart grid applications. Sensors and Actuators A: Physical. 294:8-16.
E
Wilson KD, Sun N, Huang M, Zhang WY, Lee AS, Li Z, Wang SX, Wu JC.  2010.  Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells.. Cancer Res. 70(13):5539-48.
Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W et al..  2008.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.. Nat Mater. 7(6):478-82.
Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W et al..  2008.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.. Nat Mater. 7(6):478-82.
Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W et al..  2008.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.. Nat Mater. 7(6):478-82.
Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W et al..  2008.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.. Nat Mater. 7(6):478-82.
Wang Z, Huber C, Hu J, He J, Suess D, Wang SX.  2019.  An electrodynamic energy harvester with a 3D printed magnet and optimized topology. Applied Physics Letters. 114:013902.
Wang Z, Huber C, Hu J, He J, Suess D, Wang SX.  2019.  An electrodynamic energy harvester with a 3D printed magnet and optimized topology. Applied Physics Letters. 114:013902.
Wang Z, Huber C, Hu J, He J, Suess D, Wang SX.  2019.  An electrodynamic energy harvester with a 3D printed magnet and optimized topology. Applied Physics Letters. 114:013902.

Pages