Skip to content Skip to navigation

Two-terminal spin–orbit torque magnetoresistive random access memory

TitleTwo-terminal spin–orbit torque magnetoresistive random access memory
Publication TypeJournal Article
Year of Publication2018
AuthorsSato N, Xue F, White RM, Bi C, Wang SX
JournalNature Electronics
Volume1
Issue9
Pagination508-511
Date Published09/2018/
ISSN2520-1131
Abstract

Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is an attractive alternative to existing random access memory technologies due to its non-volatility, fast operation and high endurance. However, STT-MRAM does have limitations, including the stochastic nature of the STT-switching and a high critical switching current, which makes it unsuitable for ultrafast operation in the nanosecond and subnanosecond regimes. Spin–orbit torque (SOT) switching, which relies on the torque generated by an in-plane current, has the potential to overcome these limitations. However, SOT-MRAM cells studied so far use a three-terminal structure to apply the in-plane current, which increases the size of the cells. Here we report a two-terminal SOT-MRAM cell based on a CoFeB/MgO magnetic tunnel junction pillar on an ultrathin and narrow Ta underlayer. In this device, in-plane and out-of-plane currents are simultaneously generated on application of a voltage, and we demonstrate that the switching mechanism is dominated by SOT.

URLhttps://doi.org/10.1038/s41928-018-0131-z
DOI10.1038/s41928-018-0131-z